One-step electrodeposition of ligand-free PdPt alloy nanoparticles from water droplets: Controlling size, coverage, and elemental stoichiometry

Andrew D. Pendergast, Matthew W. Glasscott, Christophe Renault, Jeffrey E. Dick

A R T I C L E I N F O

Keywords:
- Alloy
- Bimetallic
- Electrodeposition
- Emulsion droplet
- Nanoparticle

A B S T R A C T

We present a robust and facile method to produce metal nanoparticle (NP) alloys in a one-step synthesis using direct electrodeposition onto highly oriented pyrolytic graphite (HOPG). Precursor salts, H2PtCl6 and Pd(NO3)2, were dissolved in a 1 mM sodium dodecyl sulfate (SDS) water droplet with 1× phosphate buffered saline solution and suspended in a dichloroethane (DCE) continuous phase. Tetrabutylammonium perchlorate was added to the DCE continuous phase to maintain charge balance during electrodeposition. NP fabrication via electrodeposition was driven by droplet collisions onto HOPG, which was biased at a potential where the metal precursor salts would reduce to their respective zero-valent atoms. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) were used to study the size, coverage, and morphology of the NPs as well as the atomic stoichiometry. EDX mapping indicated homogeneous distribution of Pd and Pt at the single NP level. Homogeneously alloyed PdPt NPs were realized from this study with demonstrated control over metal composition, surface coverage, and NP size.

1. Introduction

Owing to their unique chemical and physical properties that sometimes differ from bulk, polycrystalline metals, metallic nanoparticles (NPs) have received extensive interest in the field of electrochemistry with a particular emphasis on electrocatalysis and sensing applications [1–5]. Sometimes, however, NPs made of a single metal do not present desired stability or activity. For electrocatalysis in particular, metal alloy NPs (MANPs) offer tremendous advantages over single metal NPs in their chemical and physical properties [6,7]. For instance, direct methanol oxidation on platinum is difficult due to the deleterious effects of carbon monoxide poisoning; however, it has been shown that the incorporation of palladium into platinum allows for effective methanol oxidation without the poisoning effects of carbon monoxide [8–10]. Furthermore, the addition of iron oxide into a nickel oxide electrocatalyst has been shown to greatly increase the activity toward the oxygen evolution reaction [11]. Beyond electrocatalytic applications, bimetallic and higher-order alloyed NPs can offer unique structural, magnetic, and optical properties compared to monometallic and bulk materials [12]. Importantly, the structure and elemental composition of homogeneous NPs can be modified to optimize catalytic pathways by combining individual elemental properties and revealing novel dynamic properties [13,14]. Thus, the ability to alloy metal NPs and control the stoichiometry is of great importance.

To study the electrochemical properties of MANPs, the general requirement of attaching the MANPs to a substrate must be met for measurements to be made. While success has been achieved in the homogeneous synthesis of MANPs and subsequent adsorption of MANPs onto conductive surfaces [12], these MANPs must incorporate a ligand to achieve a stable colloidal suspension. Impact methods have also been developed to electrodeposit NPs onto surfaces [3,15]. Previously, Booth and co-workers used an electron-transfer mediator to generate gold NPs at the interface between a trifluorotoluene droplet and water, effectively producing a Pickering emulsion droplet [16]. From these experiments, two main limitations must be considered: (1) The use of ligands may block surface sites for electrocatalytic reactions, impeding the study of NP reactivity [17–21] and (2) drop-casting and adsorption onto a substrate does not guarantee electrical connection of the MANP to the underlying substrate, thereby leading to variability in the total charge transfer observed via electrochemical characterization [22]. One method of solving these issues is by direct electrodeposition of MANPs onto the surface of an electrode. Direct electrodeposition does not require stabilizing ligands, maximizing the surface area of a MANP available for electrocatalytic studies. Electrodeposition also requires contact to be made to the underlying substrate, such as highly-oriented pyrolytic graphite (HOPG) [23], minimizing the fraction of MANPs
without electrical contact. Previous efforts have suggested that emulsion-based systems can be used to generate NPs by direct electrodeposition [24], however, these techniques demonstrate limited control over NP size, morphology, and coverage.

Classical electrodeposition of MANPs is not well characterized due to difficulties in controlling the size, coverage, morphology, and composition of the NPs. We recently addressed the issue of non-homogeneous electrodeposition of metal NPs with a new method. This method is based on the electrodeposition of monometallic NPs from aqueous droplets suspended in a dichloroethane (DCE) phase (i.e. a water-in-oil emulsion). Briefly, a metal precursor confined in a water droplet is reduced to metal when the freely diffusing droplet collides with the surface of a conducting substrate biased at a sufficiently cathodic potential for electrodeposition to occur. We assume that each droplet collision results in the electrodeposition of a metal NP, which was supported by an analysis of the mass transfer of droplets [25]. The stochastic nature of the collision generates a random distribution of NPs on the surface. We have demonstrated accurate control over surface coverage and size for Pt NPs deposited on amorphous graphite substrates [25,26]. Our approach was also extended to the electrodeposition of Au, Ag, Sn, Ce, Fe, and Cu NPs onto various substrates including boron-doped diamond, gold, silicon, and HOPG. Here, we extend this method to the electroosynthesis of PdPt MANPs and demonstrate control over size, coverage on HOPG, and stoichiometric composition of metals. This method represents the first of its kind to robustly control size, coverage, and metal composition during electrodeposition experiments.

2. Experimental

All chemical reagents were analytical grade and used without further purification. Stock solutions of each metal (100–300 mM) were made in MilliQ water (> 18.2 MΩ cm) and diluted as necessary to be used in the emulsion preparation. It is important to note that metal salt precursor stock solutions can degrade under ambient conditions; therefore, a fresh stock solution should be made for daily experiments. The electrodeposition experiments were performed using a CHI model 601E potentiostat (CH Instruments, Austin, TX) on the “Amperometric i-t curve” mode. Scanning Electron Microscopy (SEM) images and Energy Dispersive X-ray Spectroscopy (EDX) spectra were taken using a Helios 600 Nanolab Dual Beam System (FEI, Hillsboro, OR) and INCA PentaFET-x3 (Oxford, Abingdon, United Kingdom) respectively at 30 keV and 0.69 nA. A schematic diagram of the NP electrodeposition procedure is presented in Fig. 1.

First, a water-in-DCE emulsion was prepared from a 30 μL 1 mM sodium dodecyl sulfate (SDS) aqueous droplet containing 15 mM H₂ PtCl₆ and 15 mM Pd(NO₃)₂ and 1× phosphate buffered saline solution (PBS), in an organic phase of 5 mL DCE with 0.1 M tetrabutylammonium perchlorate (TBAClO₄). TBAClO₄ was used as a non-aqueous supporting electrolyte necessary to maintain charge balance during the electrodeposition by the transfer of TBA⁺ across the oil-water interface [27]. Three different emulsions were prepared to demonstrate stoichiometric control: Pd₀.₁Pt₀.₉, Pd₀.₅Pt₀.₅, and Pd₀.₉Pt₀.₁. Emulsions were formed by ultrasonication (500 W, amplitude 40%, 1/16” microtip probe, Q500 Ultrasonic Processor, Qsonica, CT) with a pulsed sonication method (5 s on, 5 s off; total 6 cycles). A HOPG substrate with an exposed radius of 2 mm (the working electrode, WE in Fig. 1) is biased at −0.2 V vs Ag/AgCl (1 M KCl quasi reference electrode, RE in Fig. 1) [25,28], a sufficiently negative potential to ensure the reduction of both metal salts as depicted in the schematic zoom of a single droplet in Fig. 1. We found that −0.2 V was sufficient for electrodeposition due to the manifestation of NPs in electron micrographs. The counter electrode (CE in Fig. 1) is a Pt wire. The cell is filled with 2.0 mL of emulsion solution, and a chronoamperogram was recorded. After electrodeposition over typically 1000 s, the substrate is rinsed with DCE, 100% ethanol, and MilliQ water for 5 min each to remove residual salts and surfactants. A UV–Vis analysis indicated up to 1.6% of metal salt partitioned out of the droplets due to the sonication process (data not shown). While this small amount of salt had no negative effects on NP electroosynthesis, the effects of metal ion partitioning at the water-DCE interface on NP structure is currently being investigated.

3. Results and discussion

3.1. Size and coverage control

A representative SEM image of a HOPG substrate following PdPt alloy NP electrodeposition is shown in Fig. 1c with bright spots corresponding to NPs. Under our experimental conditions, the surface

Fig. 1. a) A water-in-DCE emulsion was prepared by horn sonication, b) following ultrasonication, droplet-mediated electrodeposition occurs at the droplet-electrode interface, c) surface coverage and NP size were controlled by electrodeposition time and metal salt precursor concentration respectively. SEM images on the right show a representative HOPG substrate following electrodeposition of Pd₀.₉Pt₀.₁ NPs and representative single NP morphologies.
The density of NPs is homogeneous as previously shown for monometallic NPs electrodeposited using this method \cite{25}. The NP density on the underlying substrate can be adjusted by varying the electrodeposition time. \textbf{Fig. 2a} evidences that the coverage of NP varies with the duration of electrodeposition, as expected for a system where the arrival of droplets at the substrate is controlled by semi-infinite linear diffusion. The red line is a theoretical model of the integrated form of the Cottrell equation for the conditions of electrodeposition normalized to area, calculated from the following equation \cite{25,29}:

$$\text{Coverage } \left(\frac{N_{\text{NP}}}{m} \right) = 2C^* D \frac{1}{2} \pi \frac{1}{2} t^2 N_A$$

where \(C^*\) is the concentration of droplets, \(D\) is the diffusion coefficient of droplets, \(t\) is time, and \(N_A\) is Avogadro's number. Here, the diffusion coefficient of a droplet is estimated using the Stokes–Einstein approximation. The observed deviation from Cottrellian behaviour may be explained by the presence of droplet-stabilizing surfactant which can inhibit electron transfer at the droplet–electrode interface coupled with polydispersity in the emulsion droplet size \cite{26}. Understanding the underlying complex NP electrodeposition and precursor ion diffusion mechanisms is a current avenue of study in this lab.

Representative NP micrographs are additionally presented in \textbf{Fig. 1c}, demonstrating unique morphologies via electrodeposition. The average radius of the NPs is 32 ± 8 nm with a hemispherical morphology with a size distribution as presented in \textbf{Fig. 2c}. The size of the NPs can be tuned by changing the concentration of metal precursor inside the droplets. \textbf{Fig. 2b} shows statistically significant variations in mean NP radius from 20 to 30 nm when changing the total metal precursor concentration from 10 to 25 mM (statistical analysis via One-Way ANOVA with Turkey’s test for multiple comparisons). The relationship between initial precursor concentration in the droplet and NP radius follows a cubic root law (see blue line in \textbf{Fig. 2b}). The volume, and thus the size, of the resulting NP is found by multiplying the volume of the unit cell by the total number of unit cells, assuming that each molecule of precursor salt reduces to a single metal atom in a fcc lattice.

3.2. Stoichiometric control

We were interested in determining whether or not the electrodeposited NPs are an alloy of Pt and Pd or two separate phases. Representative SEM and EDX images are shown in \textbf{Fig. 3} for the three different molar ratios of Pt and Pd salt precursors (final concentration 50 mM). SEM images of individual NPs with molar ratios of Pd_{0.1}Pt_{0.9}, Pd_{0.5}Pt_{0.5}, and Pd_{0.9}Pt_{0.1} present similar morphologies and rough surfaces. Elemental mapping of Pt and Pd on individual NPs evidences a homogeneous distribution of the metals within the NP and an overlap throughout the domain of a single NP. This observation clearly differs from intermetallic microstructure characteristic of core shell particles that have previously been reported \cite{10,30}. EDX analysis for molar ratio determination was conducted on NPs with radii up to approximately 100 nm, however, elemental mapping on smaller NPs significantly reduced micrograph resolution due to instrumental drift over long exposure integration times. The Pt and Pd mapping was used to semi-quantitatively analyze the atomic composition of a single NP. Alloy NPs made from droplets containing a molar ratio of Pd_{0.1}Pt_{0.9}, Pd_{0.5}Pt_{0.5}, and Pd_{0.9}Pt_{0.1} present atomic ratios of Pd_{0.89}Pt_{0.11}, Pd_{0.52}Pt_{0.48}, and Pd_{0.18}Pt_{0.82} respectively. The Pd_{0.89}Pt_{0.11} and Pd_{0.52}Pt_{0.48} molar ratio follow closely the initial ratio of precursors inside the droplet. The minor deviation observed for the Pd_{0.1}Pt_{0.9} case can possibly be attributed to uncertainties in the quantification. Most importantly, the composition of the alloy can be conveniently tuned by adjusting the initial relative concentration of precursors inside the droplet. As elemental stoichiometry has been previously shown to enhance the electrocatalytic properties of alloyed materials compared to monometallic metal systems, NP electrocatalytic characterization via

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{a) Substrate coverage by PdPt NPs (30 mM total metal salt precursor) can be controlled by tuning electrodeposition time. b) Pd_{0.5}Pt_{0.5} NP size can be modulated by varying total metal precursor ion concentration in aqueous droplet. c) 30 mM Pd_{0.5}Pt_{0.5} NP population radius distribution following 1000 s deposition. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)}
\end{figure}
voltammetry is a current investigation of this laboratory.

4. Conclusion

In conclusion, we demonstrate that electrodeposition of NPs via co-reduction of PtCl₆²⁻ and Pd(NO₃)₂ in a water-in-oil emulsion system generates alloyed NPs with tuneable stoichiometry. Fabrication of these alloy NPs can be controlled with respect to NP size and substrate coverage. While a number of NP fabrication techniques currently exist, this proposed droplet deposition technique offers a novel method to generate alloy NPs. This approach enables homogeneous functionalization of any conducting substrate with alloy NPs and in principle can be extended to any alloy provided the metal precursors are stable in water and can be electrochemically reduced. The flexibility of our electro-deposition technique coupled with the numerous interesting properties of alloys renders this technique desirable for a wide range of applications.

Conflict of interest statement

Declarations of interest: none.

Acknowledgements

We would like to acknowledge the University of North Carolina at Chapel Hill for start-up funds, which supported this work. This work was performed in part at the Chapel Hill Analytical and Nanofabrication Laboratory, CHANL, a member of the North Carolina Research Triangle Nanotechnology Network, RTNN, which is supported by the National Science Foundation, Grant ECCS-1542015, as part of the National Nanotechnology Coordinated Infrastructure, NNCI. C.R. acknowledges the funding of the CNRS and the Agence Nationale de la Recherche (ANR-17-CE09-0034-01, “SEE”).

References

